1. Olsen M.A., Šmida V., Busch C. Finger Image Quality Assessment Features – Definitions and Evaluation // IET Biometrics. 2016. Vol. 5. No. 2. P. 47–64. https://doi.org/10.1049/iet-bmt.2014.0055
2. Yao Zh., Le Bars J., Charrier C., Rosenberger C. Literature Review of Fingerprint Quality Assessment and Its Evaluation // IET Biometrics. 2016. Vol. 5. No. 3. P. 243–251. https://doi.org/10.1049/iet-bmt.2015.0027
3. Alonso-Fernandez F., Fierrez J., Ortega- Garcia J., Gonzalez-Rodriguez J., Fronthaler H., Kollreider K., Bigun J. A Comparative Study of Fingerprint Image-Quality Estimation Methods // IEEE Transaction on Information Forensics and Security. 2007. Vol. 2. No. 4. P. 734–743. https://doi.org/10.1109/tifs.2007.908228
4. Kanjan N., Patil K., Ranaware S., Sarokte P. A Comparative Study of Fingerprint Matching Algorithms // International Research Journal of Engineering and Technology. 2017. Vol. 4. No. 11. P. 1892–1896.
5. Chen T., Jiang X., Yau W. Fingerprint Image Quality Analysis / 2004 IEEE International Conference on Image Processing (ICIP 2004). (Singapore, October 24–27, 2004). IEEE, 2004. Vol. 2. P. 1253–1256. https://doi.org/10.1109/icip.2004.1419725
6. Shen L., Kot A., Koo W. Quality Measures of Fingerprint Images. In: Bigun J., Smeraldi F. (eds). Audio- and Video-Based Biometric Person Authentication. Third International Conference, AVBPA 2001 (Halmstad, Sweden, June 6–8, 2001). Proceedings. Lecture Notes in Computer Science. 2001. Vol. 2091. P. 266–271. https://doi.org/10.1007/3-540-45344-x_39
7. Asatryan D., Egiazarian K. Quality Assessment Measure Based on Image Structural Properties / 2009 International Workshop on Local and Non-Local Approximation in Image Processing (Tuusula, Finland, August 19–21, 2009). IEEE. 2009. P. 70–73. https://doi.org/10.1109/lnla.2009.5278400
8. Asatryan D.G. Gradient-Based Technique for Image Structural Analysis and Applications // Computer Optics. 2019. Vol. 43. No. 2. P. 245–250. https://doi.org/10.18287/2412-6179-2019-43-2-245-250
9. Асатрян Д.Г. Оценивание степени размытости изображения путем анализа градиентного поля // Компьютерная оптика. 2017. Т. 41. № 6. С. 957–962. https://doi.org/10.18287/2412-6179-2017-41-6-957-962
10. Geusebroek J.-M. The Stochastic Structure of Images. In: Kimmel R., Sochen N.A., Weickert J. (eds). Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science. 2005. Vol. 3459. P. 327–338. https://doi.org/10.1007/11408031_28
11. Yanulevskaya V., Geusebroek J.-M. Significance of the Weibull Distribution and its Sub-models in Natural Image Statistics / Proceedings of the Fourth International Conference on Computer Vision Theory and Applications (Lisboa, Portugal). 2009. Vol. 1. P. 355–362. https://doi.org/10.5220/0001793203550362
12. Гонсалес Р., Вудс Р. Цифровая обработка изображений. Изд. 3-е, испр. и доп. М.: Техносфера, 2012. 1104 c.
13. Jain A.K., Chen Y., Demirkus M. Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features / 18th International Conference on Pattern Recognition (ICPR’06). (Hong Kong, China, August 20–24, 2006) / IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007. Vol. 29. No. 1. P. 15–27. https://doi.org/10.1109/icpr.2006.938
14. Maltoni D., Maio D., Jain A., Prabhakar S. Handbook of Fingerprint Recognition. New York: Springer, 2003. 494 p. https://doi.org/10.1007/978-1-84882-254-2
15. Asatryan D., Sazhumyan G., Sakanyan B. New Technique for Analysis of Fingerprint Poroscopical Map / Proceedings of 9th International Conference on Computer Science and Information Technologies – CSIT’2013. Yerevan: IIAP, 2013. P. 181–184.
16. Otsu N. A Threshold Selection Method from Gray-Level Histograms // IEEE Transaction on Systems, Man, and Cybernetics. 1979. Vol. 9. No. 1. 62–66. https://doi.org/10.1109/tsmc.1979.4310076